
CASE STUDY: Improper
Authorization leading to
Remote Command Execution



Client Overview
Arcus was engaged from a prominent firm within the smart buildings and smart windows
to perform an application penetration test, aimed at assessing the security of their web
and mobile applications. The primary goal was to pinpoint and exploit any potential
vulnerabilities, thereby fortifying the integrity of their online platforms.

Scope
The targets included in this engagement were the client's web and Android applications.
Our focus was on detecting vulnerabilities and leveraging them to potentially
compromise user data and/or the underlying infrastructure.

Testing Methodology
Our assessment team employed a comprehensive testing methodology, combining
automated scanning tools with manual testing techniques. The goal was to simulate
real-world cyber threats and identify vulnerabilities that might be missed by automated
tools alone.

Discovery of Remote Code Execution Vulnerability
The consultants identified a critical-severity vulnerability within the application, which
allowed for remote code execution on the underlying server. The finding consists of
multiple steps in order to achieve the final result, which was a complete takeover of the
back-end infrastructure.

Exploitation Phase 1: Improper Authorization Controls
Initially, no high-privileged accounts were provided during the scoping of the
engagement, which meant that the team only had limited access to the application’s
features. Therefore, as a first step, the team a�empted to increase the privileges they
were granted at the beginning.
For context, there were 4 main roles within the application, let’s call them users,
supervisors, managers and administrators. In the UI, users had no access to create other
accounts on the application, but other roles did.

The issue lied in the application’s API, which allowed low-privileged users to add new
accounts and assign them the supervisor role.



Figure 1. Creating the supervisor user

Even though this was enough to prove the vulnerability exists, the team performed the
same steps with the newly created supervisor account, this time assigning the
administrator role to the new account.

Figure 2. Creating the administrator user

Exploitation Phase 2: Remote Code Execution
After the first phase, the team began inspecting the additional features with the
high-privileged administrator account. Two features stood out, one was a file uploading
functionality which only accepted a “.tar.gz” file, and a releasing feature, which allowed
administrators to release any new product version.



Any uploaded “.tar.gz” file would be extracted on the back-end, which meant a new
directory would be created and the files present within the compressed file would get
stored there.

On the Release page, administrators would select a version of the software and revert or
upgrade to it in an instance, by simply clicking the Install bu�on. This was done with the
help of a Python script present on the server, named “deployer.py”, which was called by
the application and given a bunch of parameters for configuration purposes. A correct
assumption here was that the Python script was called from the current directory, but
through a deep inspection of the HTTP request body, the team found a parameter used
to specify the internal path from which the script would be called.

The team created a Python script on a local machine, called “deployer.py”, which had
instructions to execute commands on the system, as shown below:

Figure 3. The contents of the deployer.py script

This was saved in a directory called “archive”, and the whole directory was compressed to
a “archive.tar.gz” file. This file was uploaded in the application’s Upload Deployment
feature.

The team went back to the Releases tab, selected a version and intercepted the
installation HTTP request. In this request, the team edited the path parameter and gave
it the “archive” value, pointing to the directory created by the earlier file upload.

By forwarding the HTTP request, the instructions on the Python script were executed, and
the team got a reverse TCP connection from the underlying server. This was done due to
the application searching for the deployer.py script by default, on a specified internal
path, which subsequently loaded the arbitrary script uploaded by the team.



Figure 4. Service deployment HTTP request

This successfully gave the team a shell on the server, as the root user, meaning they now
had full access to the whole server.

Figure 5. The received TCP connection

Remediation and Recommendations
After discovering the Remote Code Execution (RCE) vulnerability, the assessment team
promptly informed the client, providing comprehensive details regarding the findings and
possible risks. Suggestions were made to address the improper access controls
vulnerability and enforce stronger controls and sanitization of user input, such as API
request parameters and file uploads.

Outcome
The client addressed the access controls and insecure file upload feature issue following
the assessment team's recommendations. This penetration test not only secured their



web application but also emphasized the significance of regular security assessments for
identifying and fixing vulnerabilities proactively.

Impact
Remote Code Execution (RCE) vulnerabilities have significant impact, as they allow
a�ackers to execute arbitrary code on a target system or application remotely. This can
lead to complete compromise of the system, enabling the a�acker to gain unauthorized
access, manipulate data, install malware, or perform other malicious activities. RCE
vulnerabilities are considered one of the most severe types of security flaws, posing
serious risks to the confidentiality, integrity, and availability of the affected systems and
data.



ARCUS
+383 49 571 723
contact@arcusec.com
https://arcusec.com


